商不变的规律说课稿
作为一位优秀的人民教师,时常需要编写说课稿,借助说课稿可以有效提升自己的教学能力。说课稿应该怎么写才好呢?下面是小编帮大家整理的商不变的规律说课稿,欢迎大家分享。
商不变的规律说课稿1教材分析:
“探索与发现(四)商不变的规律”是义务教育课程北师大版四年级上册第P75—76页的内容。这部分教材是在学生熟练掌握了三位数除以两位数的基础上安排的,让学生掌握这部分知识,既为学习简便运算作好准备,也有利于以后学习小数除法、分数和比的有关知识,是小学数学中十分重要的基础知识,同时商不变的规律在实际应用中较为广泛,有利于学生运用所学知识技能来解决一些实际问题,让学生在参与、观察、比较、猜想、概括、验证等学习活动过程中体验成功。
教学目标:
1、理解掌握商不变的规律
2、培养学生观察、比较、抽象、概括等能力
3、培养学生勇于探索的精神,严谨的学习态度
4、能运用商不变的规律,进行一些除法运算的简便计算,并能解决生活中的实际问题
教学重点:
理解、掌握和运用商不变的规律
教学难点:
引导学生归纳商的不变性质,
教法学法:
根据本课教学内容的特点和学生的思维特点,我选择了引导发现法为主,辅以谈话法、直观演示法、小组合作等方法的优化组合。充分发挥教师的点拨作用,调动学生的能动性,引导他们去发现规律、分析规律、解决实际问题、获取知识,从而达到训练思维、培养能力的目的。
教法和学法是和谐统一的。相互联系不可分割的,教学时要注意发挥学生的主体作用,充分调动各种感官参与学习,诱发其内在的潜力,独立主动的探索规律,使他们不仅学会,而且会学。如教学商不变规律时,引导学生观察、分析、发现规律,学生先从上往下观察,找到被除数和除数同时扩大相同的倍数,商不变;接着让学生从下往上观察,迁移类推出被除数和除数同时缩小相同的倍数,商不变。把学生的求知欲由潜伏状态诱发为活动状态,培养学生的主动探索精神和概括归纳能力。
教学过程:
一、激趣设疑,提出问题
《数学课程标准》指出:教师应改变以例题、示范、讲解为主的教学方式,要结合教例创设与学生生活环境密切相关的问题学习情境。认知心理学研究也表明,“疑”产生于一定的问题情境,问题情境是学生展开自主学习的重要载体。所以我创设这样的情境。
出示狐狸图,这是什么动物?想不想听听狐狸四兄弟的故事?狐狸四兄弟为了卖香蕉谁卖得便宜都吵了起来了。
老大说: 2千克 卖了8元钱;
老二说: 20千克 卖了80元钱;
老三说: 200千克 卖了800元钱;
老四说: 20xx千克 卖了8000元钱.
师:你认为谁卖得便宜?
师:你是怎么知道的呢?
生:8÷2=4 80÷20=4 800÷200=4 8000÷20xx=4
师:哦,原来是这样,你真聪明!为什么卖的斤和钱数都在变化,可是每斤的价钱都一样呢?
用“算式设疑”引发学生认知上的冲突,使学生欲罢不能,在学习行为中遇到障碍时,让学生观察之前面的算式,引导提出“被除数和除数是怎样变化的?”“商在什么情况下会不变?”等数学问题,明确学习目标,起到目标定向的作用。
二、分析问题、总结规律
在这一环节中,我安排了三个步骤,先让学生自主发现规律,然后验证规律,最后是深化理解规律。
学生分小组讨论、自主探索,教师要参与、指导讨论。由于学生讨论容易偏离重点,所以要注意把学生的讨论引导到重点上来。如:你们组的观察顺序是?什么变了?什么没变?又是怎样变的?
学生围绕讨论的问题、向全班交流讨论的情况,鼓励学生大胆发言、诱导学生说出重点内容。教师最后小结:被除数和除数同时乘以或除以相同的数,商不变。
根据学生刚才的总结,教师提出这样一个问题:被除数乘以或除以0,除数也乘以或除以0,商变不变?接着让小组进行讨论?这时学生很容易就发现商不再等于4。
教师补充到被除数和除数同时乘以或除以相同的数(0除外),商不变。
同学们发现的这个规律是否具有普遍性呢?请你们接下来再举几个例子。
在学生验证这后,然学生给本节课发现的规律起名字“谁能给我们发现的规律取个名字?这个规律人们通常叫“商不变的规律”。(板书:商不变的规律)
充分发挥学生的主体作用、让学生积极主动地投入到数学学习的过程中去,充分利用合作探索的学习方式,让学生自主探索。数学家波利亚说“学习任何知识的最佳途径,都是自己去发现。因为这种发现,理解最深刻、也最容易掌握其中的内在规律、性质和联系。” “自主探索、亲身实践、合作交流。”是现代教育理念提出的学生最重要的学习方式。学生通过对教师提供的信息进行分析、探索和讨论,从中感悟到纳税的重要意义。同时使学生的主体精神也得到良好的培养。
三、运用规律,解决问题
在这一环节主要是运用“商不变性质”来解决“3600÷600=”等被除数、除数末尾同时有0的除法,让学生所有学用,在口算是寻找最佳方法,提高口算速度。
四、巩固练习,扩展应用
共三道练习,第一道是口算,让学生用今天学过的知识进行简算,其中象“7500÷50=”等学生易错的题目,通过学生提醒学生的方式,提醒学生在简算时,被除数和除数末尾要去掉相同个数的0。
第二道练习属于开放性练习:200÷50=(200○□)÷(50○□)拓展学生思维空间,从不同角度、不同类型、不同形式分析问题,解决问题,发展学生创新思维。
第三道是实际生活问题,一捆铁丝有多长?(提高性练习)让学生观察图片,说出图中两个小朋友是怎样解决生活中的问题的?学生讨论,要求运用定律解决的过程要说出来。
第四道是观察与思考(拓展性练习)
出示题目。
400÷25=(400×4)÷(25×4)=1600÷100
先让学生思考:观察算式特点,怎样使除法变得简便?为使除法简便,在被除数400和除数25中,首先要对哪个数扩大倍数?根据什么可以同时扩大相同倍数?
让学生利用这种方法独立完成。
完成后找个别学生说说自己的运算过程。
如何利用定律解决实际问题是本课难点,利用这个练习把知识的利用具体化了,更具体显示了定律给我们带来的方便。
第五道练习是从课前情景中提出的问题:这时狐狸妹妹也来这里卖香蕉了,她的售价牌上这样写着(8÷9)÷(2÷9),她买的香蕉便宜吗?
五、交流感受,提升认识
“学生想牢固地掌握数学、就必须用 ……此处隐藏1588个字……=(2402)(402)=6
4800800=(24020)(4020)=6
6010=(2404)(404)=6
244=(24010)(4010)=6
变 不变
接着让学生分组讨论,单组同学探究被除数和除数同时扩大相同倍数的情况,双组同学研究被除数和除数同时缩小相同倍数的情况,再由集体概括出商不变性质,同时强调同时、0除外来完善概念。当然,根据不完全归纳提出的猜想不完全可靠,而对小学生来将,对提出的假设也只能另举例子来检验。于是,我通过让学生写例子验证,以培养学生的科学思想方法。最后我针对学生易错、易漏之处让学生通过判一判、填一填等即时练习深入理解规律。
判一判
35050=(35010)(5010)
7525=(754)(254)
36090=(360+10)(90+10)
9113=(912)(133)
填一填
20040=(20xx)(400 )
=(200○ )(405)
=(20xx) ( ○ )
= 50
=20
第三环节:运用规律,解决问题
在这一环节主要是运用商不变性质来解决3600600=等被除数、除数末尾同时有0的除法,让学生所有学用,在口算是寻找最佳方法,提高口算速度。
第四环节:巩固练习,扩展应用
共三道练习,第一道是口算,让学生用今天学过的知识进行简算,其中象750050=等学生易错的题目,通过学生提醒学生的方式,提醒学生在简算时,被除数和除数末尾要去掉相同个数的0。
第二道练习是解决课刚开始时狐老六提出的问题:烧饼每个:(2413)(413)=( )元。
第三道练习属于开放性练习:24040=(200○ )(40○ )拓展学生思维空间,从不同角度、不同类型、不同形式分析问题,解决问题,发展学生创新思维。
第五环节:归纳总结,完善认知
通过询问你有什么收获?这些收获主要通过什么方式获得?进一步系统完善认知。
第六环节:拓展延伸,孕伏新知
简便计算 2000125=
商不变的规律说课稿4一、说教材
《商不变的规律》是九年义务教育小学数学第七册中的内容,在课本上的第84页上,共有三个例题,是一节新的授课。
“商不变的规律”是一个新概念,被除数和除数必须同时扩大(或缩小)相同的倍数,商才能不变,这是一种函数思想,学生在以前没有接触过。这个规律不但是被除数、除数末尾有零的除法的简便运算的根据。也是以后学习小数除法的依据,也有助于分数的基本性质的理解,同事还可以向学生初步参透函数思想。
二、说教学过程
1.“变”中求“不变”,导入新课。
教学伊始,先出现一道除法算数“8÷4=2”,然后变化被除数和除数,使之成为:
16÷4=4
24÷8=3
40÷2=20
使学生看到犹豫被除数和除数的变化,商也发生了变化,紧接着出现“80÷40=2”,让学生看到被除数和除数都变了,商却不变,从而引出课题。
“商的变化”是学生经常见到一般的现象,“商不变”则是一种特殊现象。教学中,打破老框框,引导学生从变中发现不变,从而导入新课的学习,是符合教学规律的。“变”与“不变”本身就是一个辩证的关系,从中可使学生受到辩证唯物主义的启蒙教学,这样引入,手法新颖,有利于促进学生大脑兴奋,产生探求“商不变的规律”的强烈愿望,有助于新知识的学习。
2.突破重点,掌握新知
新教材中商不变的规律是用表格形式出现的,如下表:
被除数
24
120
240
2400
4800
除数
4
20
43
400
800
商
观察:
1.第2、3、4、5组与第1组比较。被除数和除数各有什么变化?商有什么变化?
2.第4、3、2、1与第5组比较,被除数和除数各有什么变化?商有什么变化?
教学时引导学生先从左到右观察,并教给学生观察的方法,让学生由观察除法中的被除数、除数和商的变化入手,从具体到抽象,逐步从观察、比较、分析中得出结论。这一环节老师起主导作用,使学生有目的,学有方向。接着提出新要求,改变观察方向,按照上面教学方法,让学生自己去观察、比较、分析,展开讨论,从而得出又一新规律。同时也培养了学生观察事物的能力和抽象概括能力。
3.注重学法指导,优化教学过程
例1是运用商不变的规律进行口算:
(例1:口算3600÷6004800÷400 )
这个例题的教学采取学生自学的方法。在讲完例10的练习中,最后出现一道这样的判断题:
(150÷10)÷(30÷10)=5()
学生判断后,请与150÷30进行比较,这两题的结果都是5,150÷30和15÷3哪题容易计算?学生回答:15÷3容易计算。这样很自然地过渡到例11的学习中去,这时教师列出下面几个自学提纲:
①这两道题是什么类型的口算题?
②课本上是怎样做这两题的?
③为什么可以这样做?
例2是一道应用商不变的规律,笔算除法的简算题:
(例2:8760÷120)
除数是两,三位数的除法,笔算方法学生已经掌握,这道题只需应用商不变的规律,把被除数,除数同时缩小10倍,即可达到简单的目的。又提高了学生的计算能力。
在学习了笔算除法的简便运算后,学生最容易出现的错误是把被除数和除数末尾的0全划掉,而忽视了缩小相同的倍数。针对这一情况,我在这里安排了这样一组练习题:想一想,下面各题中的哪些零可以划去?
230√920 450√9900600√90600 400√5060
这样做既突出了新知识的难点,加深了对商不变规律的理解,也节省了教学时间,为学生正确进行简算扫清了障碍。
在第2题中,我编排了一道发散思维的训练题:
90÷18=(900○□)÷(180○□),这道题要求学生充分应用商不变规律,使等号两边的式子相等,同时提醒学生“0”不能作除数。第3题的难度又有所提高,要求学生自己去思考要使商不变,被除数和除数应该怎样变化。最后一道1200÷25=( )÷100,除数由25变成100,让学生根据商不变规律的理解,并能正确应用规律进行口算和简算。
课堂教学是实施素质教育的主阵地,我们只能更新观念,以学生发展为中心,才能全面提高学生素质。我在这堂课中既注重基础的掌握,又注重了能力的培养,发展了学生的思维,也培养他们的创新精神;同时,也既重视学会,更重视会学,我相信,这些举措对学生素质的提高肯定会有帮助。